Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls
نویسندگان
چکیده
This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.
منابع مشابه
Sequencing of the rus gene before and after the mutation with DES in the bacterial Acidithiobacillus sp. FJ2
In Acidithiobacillus ferrooxidans, the proteins present in the electron transfer pathway cause ferrous iron oxidation which leads to uranium extraction. The relationship between gene sequence and uranium extraction has not been investigated yet. Based on the changes in uranium extraction, the changes of rus gene sequence can reveal the direct and accurate role of this protein. For this purpose,...
متن کاملNatural Bacterial Communities Serve as Quantitative Geochemical Biosensors
UNLABELLED Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predi...
متن کاملDetermination of uranium isotopes (234U, 238U) and natural uranium (U-nat) in water samples by alpha spectrometry
Background: Due to the potential public health effects of releases of uranium to the environment, isotopic determination and measurement of this radionuclide in environmental samples is very important. Achieving this goal, monitoring programs for this radionuclide seems necessary to be applied in many countries. Materials and Methods: The uranium was separated from the water samples using anion...
متن کاملThe Effect of Type and Concentration of Surfactant and Ligand on Uranium (VI) Cloud-Point Extraction (CPE) from Aqueous Solutions (Short Communication)
In this article cloud-point extraction (CPE) was used with chelating agent to extract uranium from aqueous solutions. The methodology used is based on the formation of metal complexes soluble in a micellar phase of surfactant. The metal ions complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The effect of type of surfactants and ligan...
متن کاملMeasurements of natural uranium concentration in Caspian Sea and Persian Gulf water in by laser flourimetric method
ABSTRACT Background : Natural uranium exists in earth crust and seawater. The concentration of uranium might increase by human manipulation or geological changes. The aim of this study was to verify susceptibility of laser flourimetry method to determine the uranium concentration in Caspian Sea and Persian Gulf water. Materials and Methods : Laser flourimetric method was used to determine...
متن کامل